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Ermakov-Lewis angles for one-parameter supersymmetric families
of Newtonian free damping modes
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We apply the Ermakov-Lewis procedure to the one-parameter damped oetsntly introduced by Rosu
and Reyes, which are related to the common Newtonian free damping mbglebe general Riccati solution
[H. C. Rosu and M. Reyes, Phys. Rev.5F 4850(1998]. In particular, we calculate and plot the angle
quantities of this approach that can help to distinguish these modes from the coomudes.
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. In a previous paper _hergafter d.enoted 4%]) the nonu- Vo= —Ace P! wg sinh wot+ &) — Y cosHwgt+ &) |.
nigueness of the factorization of linear second-order differ- yt+1
ential operators has been exploited on the example of the (4)

classical Newtonian free damped oscillator, i.e.,

(i) For critical damping,82=w3. The critical y solu-
tions are given by
d? d )
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The coefficient 2B is the friction constant per unit mass and 4

wq is the natural frequency of the oscillator. )
The more general supersymmetric partner equation ~_ 1hese are thenly possible types of one-parameter damp-
ing modes related to the free damping ones by means of

Witten's supersymmetric schemi2] and the general Riccati

. d2 d 242\ solution[3].
Ngy=|—+ Z’Bd_ + wg——z y=0 (2) In practice the new parametercan be very close to zero.
dt t (yt+1) In this case, it is very difficult to differentiate the modes

from the ordinary ones. The only means we can think of is
has been obtained in I. This new second-order linear dampp-y recording somehow the geometric angle associated to the

ing equation contains the additional last term with respect to’ modes a_nd compare it W'.th the same quantity In the pr_d|-
its initial partner(1), which may be thought of as the general nary damping cases. Ong is led to this conclu3|or_1 noticing
Darboux transform part of the frequenpg]. T=1/y occurs ~ that the A modes 2have time-dependent frequencieXt)

as a new time scale in the Newtonian damping problem. I @o~2Y"/(yt+1)” and hence for them the Ermakov-
this time scale is infinite, the ordinary free damping is recov--€Wis (EL) procedure can be naturally appli¢d] (for a

ered unless for the critical case, which is special even if€cent review, seg]). Forwo# B, Eq.(2) can be reduced to

ordinary damping. As explained in I, tf modes can be & Bessel equation and the solutions can be written as follows:

obtained from they modes by operatorial means. In the fol-

lowing we_shall call themy modes. .For t_he three types of W= Y4 Adgp(k7) + B Yap(kr)]e A7 (6)

free damping, they have been obtained in | as follows.
(i) For underdampingB?< w2, denotingw,=\w3— 2 g

the underdampe¢t modes are an

W=7 Clyp(k7) + DKgp(k7)]e #7, (7)

Vo= —Ae P w,sin(wt+ ¢)+ CoiwuH‘d))}-

Y
el (3 Wherer=yt+1 and k?=(w3— B?)/y*. Whenk—x (i.e.,
v—0), we can do Hankel's asymptotic expansions, i.e., of
large Bessel argument but fixed Bessel ortee shall not
(i) For overdamping,82> w3 and wy= \/,82—(»02, the  reproduce these formulas here, the reader is directgd]to

overdampedy modes are The point is that one is indeed able to get the solutions ob-
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FIG. 1. (a) A#° (in sexagesimal gradgess timeT (in seconds FIG. 2. (8 A6%T) in the overdamped case far,=1 Hz,

in the underdamped case for the following set of parametegs:
=42 Hz, B=1 Hz, y=0.1 Hz.(b) A#%T) in the underdamped
case for the same parameters and units dg)in(c) A 6(T) in the
underdamped case for parameters and units as aforementioned.

=42 Hz, andy=0.1 Hz andT in seconds(b) A¢%T) (in sexag-
esimal gradesin the overdamping case for the same parameters and
units as in(a). (c) A6Y(T) in the overdamping case for the same
parameters and units as (a).

tained by operatorial means from inspecting Hankel's expan- [N the EL approach the angular quantities are given by the
sions. Thus, the supersymmetric operatorial procedure give§llowing formulas(6,10]:

merely the asymptotig— 0 solutions, which however could fe-260 1 g

be the most relevant from the physical viewpoint in this Aad:J' € 2 — (e pp)+ e p2|dt (8)
context. o| p? 2dt
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FIG. 3. (a) A9YT) (in sexagesimal gradei the critical case fomg=1 Hz, B=1 Hz, andy=0.1 Hz andT in seconds(b) A 69(T)
in the critical case for the same parameters and units &.iic) A 6'(T) in the critical case for the same parameters and units &s.in

and for C=const (=1), p(t)=28, and q(t)=w3—2y%
T (yt+1)2. For p#const there is a definite prescription of
Aegz%f dt’, 9 calculatingp in terms of two independent solutions of the
0 corresponding linear equation. We have followed the method
of Eliezer and Gray?9] for p(t) in terms of linear combina-

d - ,e
E(ezﬁt pp) —2e*P' p?

for the dynamical and geometrical angles, respectively.’ ) .
Thus, the total angle will be tions of the aforementioned Bessel functigfir A=B=C
_opt =D=1) that satisfy the initial conditions as given by those
Te Bt . .
Agt:f dt’. (10) authors. In the critical damping case, we used the modes of
o p? Eq. (5) with A.=D.=1. The results of the calculations for

) o ) ) some particular values of the parameters are plotted in Figs.
The so-called Pinney functiop is the solution of Pinney’s 1(a,b,9, 2(a,b,0, and 3a,b,0 for the y underdamped, over-

nonlinear equatiof8] damped, and critical cases, respectively.

t . .
"+ () o (1) +a(t)p= eXF<—2f t/ dt’) 11 This work was partially supported by the CONACyT
A T PUDAY ] A o ect No. 458100-5-25844E.

[1] H. C. Rosu and M. Reyes, Phys. Rev.5#, 4850 (1998. [5] V. Ermakov, Univ. lzv. Kiev, Series 119, 1 (1880; H. R.

(paper ). Lewis, Jr., Phys. Rev. Letil8 510(1967; J. Math. Phys9,
[2] E. Witten, Nucl. Phys. BL85 513(198)). 1976(1968.
[3] B. Mielnik, J. Math. Phys25, 3387(1984. [6] P. Espinoza, e-print math-ph/0002005.

[4] G. Darboux, C. R. Hebd. Seances Acad. 9di.1456(1882. [7] Handbook of Mathematical Functionsedited by M.

037603-3



BRIEF REPORTS

Abramowitz and I. A. SteguriDover, New York, 1970 see
formulas 9.2.5, 9.2.6, 9.2.9, 9.2.10.

[8] E. Pinney, Proc. Am. Math. So&, 681 (1950.

[9] C. J. Eliezer and A. Gray, SIAMSoc. Ind. Appl. Math. J.

PHYSICAL REVIEW E 63 037603

Appl. Math. 30, 463 (1976.

[10] M. Maamache, Phys. Rev. B2, 936(1995; D. A. Morales, J.
Phys. A21, L889 (1988; J. M. Cerveroand J. D. Lejarreta,
ibid. 22, L663 (1989.

037603-4



