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Ermakov-Lewis angles for one-parameter supersymmetric families
of Newtonian free damping modes
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We apply the Ermakov-Lewis procedure to the one-parameter damped modesỹ recently introduced by Rosu
and Reyes, which are related to the common Newtonian free damping modesy by the general Riccati solution
@H. C. Rosu and M. Reyes, Phys. Rev. E57, 4850 ~1998!#. In particular, we calculate and plot the angle
quantities of this approach that can help to distinguish these modes from the commony modes.
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In a previous paper hereafter denoted as I@1#, the nonu-
niqueness of the factorization of linear second-order diff
ential operators has been exploited on the example of
classical Newtonian free damped oscillator, i.e.,

Ny[S d2

dt2
12b

d

dt
1v0

2D y50. ~1!

The coefficient 2b is the friction constant per unit mass an
v0 is the natural frequency of the oscillator.

The more general supersymmetric partner equation

Ñgỹ[S d2

dt2
12b

d

dt
1v0

22
2g2

~gt11!2D ỹ50 ~2!

has been obtained in I. This new second-order linear da
ing equation contains the additional last term with respec
its initial partner~1!, which may be thought of as the gener
Darboux transform part of the frequency@4#. T51/g occurs
as a new time scale in the Newtonian damping problem
this time scale is infinite, the ordinary free damping is reco
ered unless for the critical case, which is special even
ordinary damping. As explained in I, theỹ modes can be
obtained from they modes by operatorial means. In the fo
lowing we shall call themg modes. For the three types o
free damping, they have been obtained in I as follows.

~i! For underdamping,b2,v0
2, denotingvu5Av0

22b2

the underdampedg modes are

ỹu52Ãue2btFvu sin~vut1f!1
g

gt11
cos~vut1f!G .

~3!

~ii ! For overdamping,b2.v0
2 and v05Ab22v0

2, the
overdampedg modes are
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ỹ052Ã0e2btFv0 sinh~v0t1f!2
g

gt11
cosh~v0t1f!G .

~4!

~iii ! For critical damping,b25v0
2. The critical g solu-

tions are given by

ỹc5F2Acg

gt11
1

Dc

g2
~gt11!2Ge2bt. ~5!

These are theonly possible types of one-parameter dam
ing modes related to the free damping ones by means
Witten’s supersymmetric scheme@2# and the general Riccat
solution @3#.

In practice the new parameterg can be very close to zero
In this case, it is very difficult to differentiate theg modes
from the ordinary ones. The only means we can think o
by recording somehow the geometric angle associated to
g modes and compare it with the same quantity in the o
nary damping cases. One is led to this conclusion notic
that the g modes have time-dependent frequenciesv2(t)
5v0

222g2/(gt11)2 and hence for them the Ermakov
Lewis ~EL! procedure can be naturally applied@5# ~for a
recent review, see@6#!. Forv0Þb, Eq.~2! can be reduced to
a Bessel equation and the solutions can be written as follo

Cu5t1/2@AJ3/2~kt!1BY3/2~kt!#e2bt ~6!

and

C05t1/2@CI3/2~kt!1DK3/2~kt!#e2bt, ~7!

where t5gt11 and k25(v0
22b2)/g2. When k→` ~i.e.,

g→0), we can do Hankel’s asymptotic expansions, i.e.,
large Bessel argument but fixed Bessel order~we shall not
reproduce these formulas here, the reader is directed to@7#!.
The point is that one is indeed able to get the solutions
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tained by operatorial means from inspecting Hankel’s exp
sions. Thus, the supersymmetric operatorial procedure g
merely the asymptoticg→0 solutions, which however could
be the most relevant from the physical viewpoint in th
context.

FIG. 1. ~a! Dud ~in sexagesimal grades! vs timeT ~in seconds!
in the underdamped case for the following set of parameters:v0

5A2 Hz, b51 Hz, g50.1 Hz. ~b! Dug(T) in the underdamped
case for the same parameters and units as in~a!. ~c! Du t(T) in the
underdamped case for parameters and units as aforementione
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In the EL approach the angular quantities are given by
following formulas@6,10#:

Dud5E
0

TFe22bt8

r2
2

1

2

d

dt8
~e2bt8ṙr!1e2bt8ṙ2Gdt8 ~8!

FIG. 2. ~a! Dud(T) in the overdamped case forv051 Hz, b
5A2 Hz, andg50.1 Hz andT in seconds.~b! Dud(T) ~in sexag-
esimal grades! in the overdamping case for the same parameters
units as in~a!. ~c! Du t(T) in the overdamping case for the sam
parameters and units as in~a!.
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FIG. 3. ~a! Dud(T) ~in sexagesimal grades! in the critical case forv051 Hz, b51 Hz, andg50.1 Hz andT in seconds.~b! Dug(T)
in the critical case for the same parameters and units as in~a!. ~c! Du t(T) in the critical case for the same parameters and units as in~a!.
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TF d

dt8
~e2bt8ṙr!22e2bt8ṙ2Gdt8, ~9!

for the dynamical and geometrical angles, respectiv
Thus, the total angle will be

Du t5E
0

Te22bt8

r2
dt8. ~10!

The so-called Pinney functionr is the solution of Pinney’s
nonlinear equation@8#

r9~ t !1p~ t !r8~ t !1q~ t !r5
C

r3~ t !
expS 22E t

p~ t8!dt8 D ~11!
03760
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for C5const ~51!, p(t)52b, and q(t)5v0
222g2/

(gt11)2. For rÞconst there is a definite prescription o
calculatingr in terms of two independent solutions of th
corresponding linear equation. We have followed the meth
of Eliezer and Gray@9# for r(t) in terms of linear combina-
tions of the aforementioned Bessel functions~for A5B5C
5D51) that satisfy the initial conditions as given by tho
authors. In the critical damping case, we used the mode
Eq. ~5! with Ac5Dc51. The results of the calculations fo
some particular values of the parameters are plotted in F
1~a,b,c!, 2~a,b,c!, and 3~a,b,c! for the g underdamped, over
damped, and critical cases, respectively.
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